SỞ GIÁO DỤC – ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT NĂM 2012
BÌNH ĐỊNH Khóa ngày 29 tháng 6 năm 2012
Đề chính thức
Môn thi : TOÁN
Ngày thi : 31 / 6 / 2012
Thời gian làm bài : 120 phút ( không kể thời gian giao đề )
Bài 1: (3điểm)
Học sinh không sử dụng máy tính bỏ túi
Giải phương trình: 2x – 5 = 0
Giải hệ phương trình:
Rút gọn biểu thức với
Tính giá trị của biểu thức
Bài 2: (2điểm)
Cho parabol (P) và đường thẳng (d) có phương trình lần lượt là y = mx2 và
y = ( m + 2 )x + m – 1 ( m là tham số ) , m 0 ).
a) Với m = –1 , tìm tọa độ giao điểm của (d) và (P).
b) Chứng minh rằng với mọi m 0 đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt.
Bài 3: (2điểm)
Quãng đường từ Quy Nhơn đến Bồng sơn dài 100 km. Cùng một lúc , một xe máy khởi hành từ Quy Nhơn đi Bồng Sơn và một xe ô tô khởi hành từ Bồng Sơn đi Quy Nhơn. Sau khi hai xe gặp nhau
, xe máy đi 1 giờ 30 phút nữa mới đến Bồng Sơn. Biết vận tốc hai xe không thay đổi trên suốt quãng đường đi và vận tốc của xe máy kém vận tốc xe ô tô là 20 km/h. Tính vận tốc mỗi xe.
Bài 4: (3điểm)
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AK và MN.
Chứng minh tứ giác BCHK là tứ giác nội tiếp.
Chứng minh AK . AH = R2 .
Trên KN lấy điểm I sao cho KI = KM. Chứng minh NI = KB.
------------------------HẾT-------------------------
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10
THÀNH PHỐ HỒ CHÍ MINH NĂM HỌC 2012 – 2013
KHOÁ NGÀY 21/6/2012
ĐỀ CHÍNH THỨC
Câu 1 : (2 điểm)
Giải các phương trình và hệ phương trình sau :
a) b)
c) x4 + x2 – 12 = 0 d) x2 - 2x – 7 = 0
Bài 2 : (1,5 điểm)
a) Vẽ đồ thị (P) của hàm số và đường thẳng (D) : trên cùng một hệ trục tọa độ.
b) Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính
Bài 3 : (1,5 điểm)
Thu gọn các biểu thức sau :
A = ; B = (2 - ) - (2 + )
Bài 4 : (1,5 điểm)
Cho phương trình : (x là ẩn số)
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.
b) Gọi là các nghiệm của phương trình.
Tìm m để biểu thức M = đạt giá trị nhỏ nhất.
Bài 5 : (3,5 điểm)
Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME a) Chứng minh rằng : MA.MB = ME. MF
b) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.
c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.
d) Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.
SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH LỚP 10 THPT
BẮC GIANG NĂM HỌC 2012-2013